Radiation exposure prior to ischemia decreases lesion volume, brain edema and cell death.
نویسندگان
چکیده
PURPOSE To investigate the neuronal response to ischemic injury following exposure to whole brain proton irradiation. METHODS Brain only proton irradiation (8 Gy, 250 MeV) was performed ten days prior to middle cerebral artery occlusion (MCAO) in 1 year old male Sprague Dawley rats. MCAO was induced in two animal groups: proton irradiated (MCAO + Rad) and MCAO only. Magnetic resonance imaging (MRI) and quantitative analysis were performed prior to and 2 days after irradiation, and then 2, 14 and 28 days after MCAO. After the last imaging time point animals were sacrificed and TUNEL staining was performed on 4% paraformaldehyde - fixed brain sections. RESULTS Neuroimaging demonstrated a reduction in ischemic lesion volume in the MCAO + Rad group compared with MCAO alone. Neurological deficits did not differ between ischemia groups. Interestingly, there was a 34% decrease in the number of TUNEL-positive cells in MCAO + Rad brains compared to MCAO alone. CONCLUSION Our results suggest that radiation treatment reduces brain edema, ischemic lesion volume and peri-ischemic apoptosis. The underlying mechanisms are currently unknown and additional studies will elucidate the significance of these results.
منابع مشابه
Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کاملاثر محافظتی زعفران در مقابل آسیبهای اکسیداتیو در ایسکمی مغزی موضعی- موقتی در موش صحرایی
Background: Numerous studies have shown the protective effects of saffron against oxidative damage in a global model of cerebral ischemia, but its effects on brain edema and oxidative ischemic injury in focal ischemic stroke are not completely understood. Therefore, this study was designed to investigate the effects of saffron on brain edema, infarct volume, antioxidant enzyme activity (glutath...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملThe Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia
One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cel...
متن کاملThe Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia
One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta neurochirurgica. Supplement
دوره 106 شماره
صفحات -
تاریخ انتشار 2010